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Dynamic density functional study of a driven colloidal particle in polymer solutions
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The dynamic density functiondDDF) theory and standard Brownian dynamics simulati®BS) are used
to study the drifting effects of a colloidal particle in a polymer solution, both for ideal and interacting
polymers. The structure of the stationary density distributions and the total induced current are analyzed for
different drifting rates. We find good agreement with the BDS, which gives support to the assumptions of the
DDF theory. The qualitative aspect of the density distribution are discussed and compared to recent results for
driven colloids in one-dimensional channels and to analytical expansions for the ideal solution limit.
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[. INTRODUCTION effects of the solvent, as rest framework for their Brownian
dynamics, and the moving colloidal particle drifts with re-
Mixtures of colloids and nonadsorbing polymer coils havespect to the polymers at a constant r@teft velocity) c. The
attracted much attention over the past decade both expereterministic DDF theory5,6] is an extension of the density
mentally and theoreticallf1]. They provide an excellent functional(DF) formalism to off-equilibrium systems, which
model system to understand the generic equilibrium and norincludes exactly the ideal gas and the external potential con-
equilibrium physics of multicomponent colloidal mixtures tributions to the free energy, and it represents the correlations
due to the fact that the interactions between the constituenfUt of equilibrium by those of an equilibrium system with
can be tailored2]. The theoretical approaches to the study oft® same density distribution. With this hypothesis, and the
the equilibrium phase behavior of colloid-polymer mixtures Nterpretation of th_e density(r,t) as the average of the in-
were largely based on the Asakura-OosaA®) [3] model, stantaneous density over the random noise in the molecular

in which the chains are modeled as ideal particles experiené‘-angevm dynamics, the theory enables the use of the well

: . . . developed approximations for the equilibrium Helmholtz
ing a hard-core repulsion with the colloids. Recently, exten-f . h hich I lit i h
sive computer simulation§4] revealed qualitative differ- free energy in DF theory, which are usually spiit into the

in the oh di hen int i bet tF}deal gas and interaction contributiond;[p]= Figeal p]
ences in the phase diagrams when intéractions between -I?Af[p]. The central DDF equation for the time-dependent
polymers are included. However, the off-equilibrium behav-

density distribution is
ior of these systems is far from being understood. In this Y

paper, we present results based on a recently proposed dy- ap(r,t)
namical density functionalDDF) formalism [5,6] and we
demonstrate that the latter is capable of describing out-of-

equilibrium diffusive processes at the Brownian time scale. From any initial distribution of polymers, the time evolu-

The adyantage .Of the DDF theory is the fagt thgt partICIetion would take the system towards a stationary density dis-
interactions are included once a good approximation for the .

equilibrium functional is known and it is well suited to treat Tiutionp(r,)=p(r—zct)=p(r"), shifting at the same rate
different external potentials. ¢ as the external potential. This distribution is the most rel-

The system under consideration is a colloidal particle be_e_vant property of the system and it corresponds to the solu-

ing dragged at a constant ratée.g., by gravitation, electric 10N Of the functional equation
or magnetic fields, or by optical clampg]) through a solu-
tion of polymers in a light solvent. The spherical colloid is , ,
represented by an external potentil,(r,t)=Ve(|r']), p(r )V((gp(r') T Vex(r )+F_O
wherer’=r—ctz is the coordinate in the reference frame-

work of the colloidal particle. The solvent provides the restwhere the time dependence is fully adsorbed into the coordi-
framework for the Langevin dynamics of the polymers, nater’. The solution of Eq(2) has been explored for sys-
which have a mobilityl'y, connected through the Einstein tems with one-dimension&lD) dependence of the potential
relation to the diffusion constant and the inverse thermal enbarrier [8], Ve, (r') =Vex(z'), along the shifting direction;
ergy, B=(kgT) . Assuming that the polymer gyration ra- the similarities and the differences with the Euler-Lagrange
dius and the colloidal particle have similar size;  equation for the DF theory of equilibrium systems were ana-
~10 ’m, and with the viscosity of a typical solvent at room lyzed there both for ideal and interacting systems. However,
temperature, the natural units for the shifting rhi/ (Bo) the 3D geometry of the present problem requires a different
would be in the range of T¥m/s, and we may safely ne- analysis, since the zero-divergence requirement for the
glect the hydrodynamic effects of the light solvent. Thebrackets in Eq.(2) leaves open a much wider functional
much heavier globular polymers would feel the competingspace in 3D than in 1D.

)
p<r.t>V(%+vext<r'>”. @

ot =F0V
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extending much further than tHeont structure forz' = o.

An increased shifting rateco=10 in Fig. b) compared to
co=1 in Fig. @], enhances these characteristics, with a
higher density front and a narrower skirt reaching further
away behind the shifting colloidal particle.

The transverse integral gf(r’) — p, overx’y’ plane as
function ofz’ gives an excess of polymers in the front region
but it vanishes in the wake region, as the positive wings
exactly compensate the depletion close tozhaxis. This is
reminiscent of the 1D resul8] for a shifting repulsive bar-

rier with a front densityp(z')=po+Aexp(—cz’) and no
wake, p(z') = po, behind. The absence of excess molecules
in the wake seems to be a generic characteristics of station-
ary states under constant bulk boundary conditions with
purely relaxative dynamics of the ideal gas molecules. Using
cylindrical coordinates’ = (R,¢’,z') we now explore ana-
lytically the asymptotic forms of both the front and the wake
regions, wheré/,(r’)=0 reduces Eq(2) to

zZ'/c

Z'/c

19

xlo xlo R IR

FIG. 1. Steady state contour density field of idéal (b) and

interacting(c), (d) polymers created by a driven colloidal particle.
Shown is the density in th&'z’ plane where the center of the
colloid is located. The colloid is moved along tlzé axis at a w
velocity oc=1 (a), (¢) and oc=10 (b), (d). Bright regions corre- p(R,Z’)=po+j da af(a)d) aRle #7, (6)
spond to low densities while dark regions show high densities. 0

¢9P(r’)) 02p(r')+?¢9p(f’)zo 5

IR 9z'? 9z’

Through a Hankel transform, the solution for the cylindri-
cally symmetricp(r’) is

Il. NONINTERACTING POLYMERS where B =c/2+ \/(?/2)2+ o? and J, is the zeroth-order

. . . . Bessel function. Far away from the external potential, a fast
Starting in the spirit of the AO modgl, for noninteracting convergence of the Hankel componerisr) is observed,
polymers,AF=0, Eq.(2) becomes a linear Fokker-Planck g4 the relevant features come from their behavior dor

equation <c. Hence we may usg,~c+ a?/c andB_~ —a?/c, for
V2p+V(p-VBV,)=0, (3)  the front and the wake regions, respectively. The expansion
of f. (a) as an even polynomial function for smalland the
with a “kinetic potential” given by BV, (r')=BVe(r') zero wake requirement lead fo (a)~A;a’+A,a’+ - -
+cz', as a function of the reduced shifting rate Bc/T,  In the wake, while at the front we expedt, (e)~By

with inverse length units. In Figs.@ and 1b) we present +Bia®+Bya*+---. Thus

numerical solutions for the density distribution of the ideal 2 4

case with bulk_ densitp,o°=1, under the effects of the p(R,Z/)%poJrecz'ea2/4[BOW_+Blw_(az_4)
external potential 2 8

6

1y — Y 6 w

Vex(r") =Voexp(—|r'/o]"), @) +By55 ("= 1627432 + - )
with BVy=10, to represent the soft repulsion between the
polymers and the shifting colloidal particle. The bulk densityfor z’'> ¢, and
po is the value of the density far away from the external .
potential and is obviously the same both for the equilibrium N —azal A W o
and the nonequilibrium driven system; moreover, for the P(RZ)~pote " A g(a=4)
ideal noninteracting systepy, just provides an arbitrary fac- 6
tor to p(r’). +A2W—(a4—16a2+32)+-~- (8)

The density distribution around the external potential 32 '

p(r') has axial symmetry and exhibits a caplike structure

with p(r')>p in thefront (z' = o), formed by the polymers for z’ < — o, wherew=+/c/|z'| anda=wR.

being pushed by the moving repulsive external potential. Although the amplitudes of these contributions depend on
These particles escape around the colloidal particle creatingthe particular external potential, the asymptotic decay forms
skirt for z'<— o, which, together with the holép(r’) are generic. For a fixed’, the structure in the transverse
<po] left behind by the potential, form aake structure plane is given by a Gaussian times a polynomial function. In
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our case the positive values Af andB, lead to a maximum 2) b)' L
front density atR=0, while the leading term at the wake
gives a minimum at R=0 and maximum atR

=2%2/|7’|/c, producing the caplike structure with parabolic
shape shown in Figs.(d) and Xb). Besides the lack of\,,
the qualitative difference between the advancing front and !

the wake comes from the exponential decay, exqa(), be-

havior of the front, which restricts the density structure to the
neighborhood of the external potential, as in tHe desult, 0.5
while for fixeda the wake structure decays as inverse powers

of z’, with a 1£'? leading term. We have tested these ana-
lytical predictions with the numerical solution of E@), and

got quantitative agreement faf >1.25> (EJ:lO) andz’
>30 (co=1) inthe front region, and’ < —7¢ in the wake

region for anyc. The contributions from higher-order terms
in Eq. (8) appear to be more important than in K@), al- e _ L -
though the qualitative aspect of the wake is already welf¥/? from thez’ axis for fixedz'/o = 1. The shifting rates are)
represented by the first term in E@®). oc=1 and(b) oc=10. Dashed lines are the results for ideal poly-
Nevertheless, we have to point that, contrary to the 1gners, while the curves for interacting polymers are plotted with
case[8], the fron:[ and the wake regions i,n our 3D system aresolid lines. The symbolgcircles are the simulation results.

in fact connected through the regions, with smiafl but Instead of solving the integro-differential E@) with this

large R, were the external potential created by the shifting . S
colloidal particle on the polymers vanishes; so that the solu[mdel‘ we have obtained the steady state distribution by the

tion of Eq.(5) should have a unique analytic form, Commont|me integration of Eq.(1) from a uniform density initial

to the front and the wake region. This has the obvious diffi_state. The stationary structure around the colloidal particle

culty of using both the positived, ) and the negativef_ ) are reachse_d with §hort integration tlm_es, as presented in Fig.
decay constants for the positivont) and negativéwake - f.or poo”=1 (which represents a fairly dense polymgr So-
values ofz’, leading to exponential growth of their respec- !ution) andc=1¢ (c) andc=100 (d). At the low velocity
tive contributions, which may only be canceled by the approco=1 the influence of interactions between the polymers is
priate behavior off(«) for large o, beyond the Taylor ex- very strong. The spherical layering structure created around
pansion used in Eqg7) and (8). The good comparison of the colloidal particle by the polymer-polymer repulsion is
our numerical solutions with the analytic results, Eg.for ~ much stronger than the front-wake asymmetry induced by
the front and Eq(8) for the wake reflects a local asymptotic the dragged colloid; the extension of the wake behind the
convergence which is quite useful to understand the qualitamoving particle is strongly reduced by the much lower bulk
tive features of the stationary density distribution, but whichosmotic compressibility of the interacting system, which fa-
cannot be taken as an exact global asymptotic result. It has @litates the filling of the axial hole by radial currents. At the
be pointed that the use of spherical, rather than cylindricahigheraleo shifting rate in Fig. dd) the effects of the
coordinates to solve Ed6) also leads to problems of con- interactions are much weaker. Although there is still a clear
vergence, as the parabolic structure of the wake implies thehortening of the wake, explained by the lower osmotic com-
entanglement of the radial and the angular coordinates.  pressibility, the main qualitative change with respect to the
ideal solution result in Fig. (b) is that the layering created
by the packing effects produces a double cuplike structure,
reaching further away from the -axis.

For the case of interacting polymers the steric effects lead In Fig. 2 we present a quantitative view of our results; we
to an effective repulsion between them, which we model byplot the polymer density as a function of the distaRde the

1.5

FIG. 2. Steady state density profiles of the polymers around a
driven colloid atz’/o=0 plotted as a function of the radial distance

Ill. THE EFFECT OF POLYMER INTERACTION

the ultrasoft Gaussian pair potentjall—16 z' axis for fixed values of'/oc==1. The solution of the
DDF approach is compared to standard B[28]. Here, the
qb(fij):erxp(—rﬁ/UZ), 9) stochastic Langevin equations for the overdamped colloidal
motion of N particles with trajectories;(t) (i=1,... N)
read as

wherer;; is the interparticle distance anglU,=1. Both for
equilibrium [12—15 and dynamical propertigsl7] the ex- dr- A
cess free energy density functional of this model has beerfgld—': —V, > $(|ri—rj])+Fedt) +Tg tcz+FR(1).
successfully approximated by a purean field or random- t H#

phase approximatiofRPA)] form (1)

There are different forces acting onto the colloidal particles:
first there is the force attributed to interparticle interactions,
second there is the external fiek,; due to the colloidal

1
Af[p]=§J d3rJd3r’¢(|r—r'|)p(f)p(r’)- (10
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particle,l‘glc is the driving force, and finally the random B NVxl(r")

forcesF(® describe the kicks of the solvent molecules acting AN= f d®r'[p(r')—pol=—= dgf’P(f')T

onto theith colloidal particle. These kicks are Gaussian ran- ¢ z

dom numbers with zero meaﬁ,@:O, and variance

for the stationary density distributions, which allows to cal-

culate the total excess from the density distribution in the

(Fi(R))a(t)(FJ(R))/B(t,):2kBTF05aB5ij5(t_t/)- (120 neighborhood of the external potential. The results for the
systems in Fig. 1 areAN,=3.05, AN,=1.883, AN,

. . =2.53, andAN4=1.879. Again, the difference between the

The subscriptgr and 8 stand for the three Cartesian compo- ) i i —
nents. The simulations were carried out with=1000 par- Interacting and the ideal cases is strongly reducedat
ticles, periodic boundary conditions in all directions and box=10, with respect te¢o=1. It is remarkable that the static
sizesL,=L,=80 andL,=160. After an equilibration time equilibrium result forAN in the ideal gas case would be
of 10° time steps, statistics were gathered over a period ofegative[as p(r)=p.eXp(— BVer))=<p,], but the station-
2x 1P time steps. In both, simulation and numerical solu-ary excessAN is positive and grows as decreases. This
tion of the DDF, the density is averaged over ringg’aand ~ may be understood from the analytical 1D reg8lk for the
radiusR with a cross sectiowr?/4. front p(z') — po~cexp(—cz’), which vanishes locally as

The good agreement between the BDS data and the DDF:0, but it still gives a positive integral that overcompen-
results gives support to both the mean field approximatiorsates the depletion inside the potential barrier and produces
(10) used to describe the effect of the interactions, and to thaN>0, consistently with the sigiiand valu¢ of the total
DDF borrowing of the equilibrium intermolecular forces, as force. The difference between the equilibriuo0) density
functionals of the instantaneous density distribut[@6].  distribution and that of a stationary state at arbitrarily small
The comparisons between the ideal solution and the interac, ;¢ positivec is remarkable. The apparent paradox come
ing system shows again that the polymer interactions afféGyom the concept of stationary state, which would appear
much more the features of the density distribution for bW afier a short transient period whenis large, but it would

than for highc. For co=1 the polymer layer around the require diverging times as—0. The very weak but ex-

col!oidal show_s only a .S".ght asymmetry fofzz’_z—a, tended structure of the exponential front gir’) for co
while the kinetic effects in ideal gas create a maximum at the ; : .
front 2/ = o <1 would never be observed in practice, and the_ transient
Qualiively we may associae he behavior ofhe Tont 2200 1 S eesenabe ous be e S o

structure to the direct kinetic effect of the advancing spheri-_ quitt T > gl
cal repulsive potential created by the colloidal particle.cAs anisotropic density distributions, with nontrivial global ef-
grows the kinetic constrain on their Brownian trajectories/€Cts even for very lowc, suggest important effects on the
becomes the dominant factor for the movement of the polyinteraction between two driven colloids in a bath of quies-

mers at the front. The polymer-polymer interaction playsCent Brownian particlepl9], qualitatively different from ef-

then a minor role, so that faro>1 the main peak in the feclgmealllnt?:/icigrrlnsnggnetqglrlwlTr::rhrle’l?a'vlgﬁce of the boundar
front structure becomes similar for ideal and interacting y y

polymers. The structure of the wake is determined by theCOl’]dItIOﬂS and the system dimension by comparing the

diffusion from the bulk solution to fil the void left behind svrgj(e[”g] results with the 1D system explored In a previous
the colloidal particle, the effect of the higher osmotic pres- ' Y: Y P

N the bulk polymer solution are limited to the neighborhood
sure accelerates that process and produces a weaker WelFthe single colloidal particle. If we consider a finite con-
than in the ideal solution limit. On the opposite extreme, forcentrationgof colloidal particleé all being drifted at the same
very low shifting rates of the colloidal particle, the effects of P ' 9

the polymer-polymer interactions are very important, both a{atec with respect to the stationary framework of the solvent,

the front and at the wake structures. At high polymer con-here would be a finite induced polymer current per unit

centrations the structure around the colloidal particle isvolume. The 3D structure, which offers easy paths for the

dominated by the steric repulsions between polymers. ThBOIymerS to escape from the colloidal particles, W(.)UId pTOb'
relatively rigid structure of molecular layers is shifted, with ably make unfeasible the approach to the full-drift regime

. ) . . . discussed for 1D systems, in which nearly all the particles
lite deformations, by the moving colloidal particle. move along the shifting potential. Another possible problem

in 3D which may be of interest are currents through a struc-

IV. DISCUSSION tured barrier with holes or slits. However, we have to be

aware of the intrinsic limitations of our DDF approach, par-

As the first point in our discussion, we consider the totalticularly in the treatment of the solvent as an inert reference
excess of polymerdN, produced by, (r') over the uni- framework for the Langevin dynamics of the polymers,

form bulk density.This is a relevant data sinc&N is the  which is not affected by the shifting external potentiat

total polymer current, which requires a total forcE,AN colloidal particlg. Altogether, we may conclude that the
provided by the colloid on the polymers. There is a generidDF offers a good theoretical tool to explore dynamical

DDF relation problems in polymers solutions subject to time-dependent
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