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Dynamic density functional study of a driven colloidal particle in polymer solutions
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The dynamic density functional~DDF! theory and standard Brownian dynamics simulations~BDS! are used
to study the drifting effects of a colloidal particle in a polymer solution, both for ideal and interacting
polymers. The structure of the stationary density distributions and the total induced current are analyzed for
different drifting rates. We find good agreement with the BDS, which gives support to the assumptions of the
DDF theory. The qualitative aspect of the density distribution are discussed and compared to recent results for
driven colloids in one-dimensional channels and to analytical expansions for the ideal solution limit.
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I. INTRODUCTION

Mixtures of colloids and nonadsorbing polymer coils ha
attracted much attention over the past decade both ex
mentally and theoretically@1#. They provide an excellen
model system to understand the generic equilibrium and n
equilibrium physics of multicomponent colloidal mixture
due to the fact that the interactions between the constitu
can be tailored@2#. The theoretical approaches to the study
the equilibrium phase behavior of colloid-polymer mixtur
were largely based on the Asakura-Oosawa~AO! @3# model,
in which the chains are modeled as ideal particles experie
ing a hard-core repulsion with the colloids. Recently, ext
sive computer simulations@4# revealed qualitative differ-
ences in the phase diagrams when interactions between
polymers are included. However, the off-equilibrium beha
ior of these systems is far from being understood. In t
paper, we present results based on a recently proposed
namical density functional~DDF! formalism @5,6# and we
demonstrate that the latter is capable of describing out
equilibrium diffusive processes at the Brownian time sca
The advantage of the DDF theory is the fact that parti
interactions are included once a good approximation for
equilibrium functional is known and it is well suited to tre
different external potentials.

The system under consideration is a colloidal particle
ing dragged at a constant ratec ~e.g., by gravitation, electric
or magnetic fields, or by optical clamps@7#! through a solu-
tion of polymers in a light solvent. The spherical colloid
represented by an external potentialVext(r ,t)5Vext(ur 8u),
where r 8[r2ctẑ is the coordinate in the reference fram
work of the colloidal particle. The solvent provides the re
framework for the Langevin dynamics of the polyme
which have a mobilityG0, connected through the Einste
relation to the diffusion constant and the inverse thermal
ergy, b5(kBT)21. Assuming that the polymer gyration ra
dius and the colloidal particle have similar size,s
;1027m, and with the viscosity of a typical solvent at roo
temperature, the natural units for the shifting rateG0 /(bs)
would be in the range of 1024m/s, and we may safely ne
glect the hydrodynamic effects of the light solvent. T
much heavier globular polymers would feel the compet
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effects of the solvent, as rest framework for their Browni
dynamics, and the moving colloidal particle drifts with r
spect to the polymers at a constant rate~drift velocity! c. The
deterministic DDF theory@5,6# is an extension of the densit
functional~DF! formalism to off-equilibrium systems, which
includes exactly the ideal gas and the external potential c
tributions to the free energy, and it represents the correlat
out of equilibrium by those of an equilibrium system wi
the same density distribution. With this hypothesis, and
interpretation of the densityr(r ,t) as the average of the in
stantaneous density over the random noise in the molec
Langevin dynamics, the theory enables the use of the w
developed approximations for the equilibrium Helmho
free energy in DF theory, which are usually split into th
ideal gas and interaction contributions,F @r#5Fideal@r#
1DF @r#. The central DDF equation for the time-depende
density distribution is

]r~r ,t !

]t
5G0“Fr~r ,t !“S dF@r#

dr~r ,t !
1Vext~r 8! D G . ~1!

From any initial distribution of polymers, the time evolu
tion would take the system towards a stationary density
tribution r(r ,t)5r(r2 ẑct)[r(r 8), shifting at the same rate
c as the external potential. This distribution is the most r
evant property of the system and it corresponds to the s
tion of the functional equation

“•Fr~r 8!“S dF@r#

dr~r 8!
1Vext~r 8!1

cz8

G0
D G50, ~2!

where the time dependence is fully adsorbed into the coo
nater 8. The solution of Eq.~2! has been explored for sys
tems with one-dimensional~1D! dependence of the potentia
barrier @8#, Vext(r 8)5Vext(z8), along the shifting direction;
the similarities and the differences with the Euler-Lagran
equation for the DF theory of equilibrium systems were a
lyzed there both for ideal and interacting systems. Howe
the 3D geometry of the present problem requires a differ
analysis, since the zero-divergence requirement for
brackets in Eq.~2! leaves open a much wider function
space in 3D than in 1D.
©2003 The American Physical Society07-1
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II. NONINTERACTING POLYMERS

Starting in the spirit of the AO model, for noninteractin
polymers,DF50, Eq. ~2! becomes a linear Fokker-Planc
equation

¹2r1“~r•“bVk!50, ~3!

with a ‘‘kinetic potential’’ given by bVk(r 8)5bVext(r 8)
1 c̄z8, as a function of the reduced shifting ratec̄[bc/G0
with inverse length units. In Figs. 1~a! and 1~b! we present
numerical solutions for the density distribution of the ide
case with bulk densityr0s351, under the effects of the
external potential

Vext~r 8!5V0exp~2ur 8/su6!, ~4!

with bV0510, to represent the soft repulsion between
polymers and the shifting colloidal particle. The bulk dens
r0 is the value of the density far away from the extern
potential and is obviously the same both for the equilibriu
and the nonequilibrium driven system; moreover, for t
ideal noninteracting systemr0 just provides an arbitrary fac
tor to r(r 8).

The density distribution around the external poten
r(r 8) has axial symmetry and exhibits a caplike structu
with r(r 8).r0 in the front (z8*s), formed by the polymers
being pushed by the moving repulsive external potent
These particles escape around the colloidal particle creati
skirt for z8&2s, which, together with the hole@r(r 8)
,r0# left behind by the potential, form awake structure

FIG. 1. Steady state contour density field of ideal~a!, ~b! and
interacting~c!, ~d! polymers created by a driven colloidal particl
Shown is the density in thex8z8 plane where the center of th
colloid is located. The colloid is moved along thez8 axis at a

velocity s c̄51 ~a!, ~c! and s c̄510 ~b!, ~d!. Bright regions corre-
spond to low densities while dark regions show high densities.
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extending much further than thefront structure forz8*s.
An increased shifting rate@ c̄s510 in Fig. 1~b! compared to
c̄s51 in Fig. 1~a!#, enhances these characteristics, with
higher density front and a narrower skirt reaching furth
away behind the shifting colloidal particle.

The transverse integral ofr(r 8)2ro over x8y8 plane as
function ofz8 gives an excess of polymers in the front regi
but it vanishes in the wake region, as the positive win
exactly compensate the depletion close to thez8 axis. This is
reminiscent of the 1D result@8# for a shifting repulsive bar-
rier with a front densityr(z8)5r01Aexp(2c̄z8) and no
wake,r(z8)5r0, behind. The absence of excess molecu
in the wake seems to be a generic characteristics of sta
ary states under constant bulk boundary conditions w
purely relaxative dynamics of the ideal gas molecules. Us
cylindrical coordinatesr 85(R,f8,z8) we now explore ana-
lytically the asymptotic forms of both the front and the wa
regions, whereVext(r 8)50 reduces Eq.~2! to

1

R

]

]R S R
]r~r 8!

]R D1
]2r~r 8!

]z82
1 c̄

]r~r 8!

]z8
50. ~5!

Through a Hankel transform, the solution for the cylind
cally symmetricr(r 8) is

r~R,z8!5r01E
0

`

da a f ~a!J0@a R#e2b z8, ~6!

where b65 c̄/26A( c̄/2)21a2 and J0 is the zeroth-order
Bessel function. Far away from the external potential, a f
convergence of the Hankel componentsf (a) is observed,
and the relevant features come from their behavior fora

! c̄. Hence we may useb1' c̄1a2/ c̄ andb2'2a2/ c̄, for
the front and the wake regions, respectively. The expans
of f 6(a) as an even polynomial function for smalla and the
zero wake requirement lead tof 2(a)'A1a21A2a41•••

in the wake, while at the front we expectf 1(a)'B0
1B1a21B2a41•••. Thus

r~R,z8!'r01e2 c̄z8e2a2/4FB0

w2

2
1B1

w4

8
~a224!

1B2

w6

32
~a4216a2132!1•••G ~7!

for z8@s, and

r~R,z8!'r01e2a2/4FA1

w4

8
~a224!

1A2

w6

32
~a4216a2132!1•••G , ~8!

for z8!2s, wherew5Ac̄/uz8u anda5wR.
Although the amplitudes of these contributions depend

the particular external potential, the asymptotic decay for
are generic. For a fixedz8, the structure in the transvers
plane is given by a Gaussian times a polynomial function
7-2
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our case the positive values ofA1 andB0 lead to a maximum
front density atR50, while the leading term at the wak
gives a minimum at R50 and maximum at R

523/2Auz8u/ c̄, producing the caplike structure with parabo
shape shown in Figs. 1~a! and 1~b!. Besides the lack ofA0,
the qualitative difference between the advancing front a
the wake comes from the exponential decay, exp(2c̄z8), be-
havior of the front, which restricts the density structure to
neighborhood of the external potential, as in the 1D result,
while for fixeda the wake structure decays as inverse pow
of z8, with a 1/z82 leading term. We have tested these an
lytical predictions with the numerical solution of Eq.~2!, and
got quantitative agreement forz8.1.25s ( c̄s510) andz8

.3s ( c̄s51) in the front region, andz8,27s in the wake
region for anyc̄. The contributions from higher-order term
in Eq. ~8! appear to be more important than in Eq.~7!, al-
though the qualitative aspect of the wake is already w
represented by the first term in Eq.~8!.

Nevertheless, we have to point that, contrary to the
case@8#, the front and the wake regions in our 3D system
in fact connected through the regions, with smalluz8u but
large R, were the external potential created by the shifti
colloidal particle on the polymers vanishes; so that the so
tion of Eq. ~5! should have a unique analytic form, commo
to the front and the wake region. This has the obvious d
culty of using both the positive (b1) and the negative (b2)
decay constants for the positive~front! and negative~wake!
values ofz8, leading to exponential growth of their respe
tive contributions, which may only be canceled by the app
priate behavior off (a) for large a, beyond the Taylor ex-
pansion used in Eqs.~7! and ~8!. The good comparison o
our numerical solutions with the analytic results, Eq.~7! for
the front and Eq.~8! for the wake reflects a local asymptot
convergence which is quite useful to understand the qua
tive features of the stationary density distribution, but wh
cannot be taken as an exact global asymptotic result. It ha
be pointed that the use of spherical, rather than cylindr
coordinates to solve Eq.~6! also leads to problems of con
vergence, as the parabolic structure of the wake implies
entanglement of the radial and the angular coordinates.

III. THE EFFECT OF POLYMER INTERACTION

For the case of interacting polymers the steric effects l
to an effective repulsion between them, which we model
the ultrasoft Gaussian pair potential@11–16#

f~r i j !5U0exp~2r i j
2 /s2!, ~9!

wherer i j is the interparticle distance andbU051. Both for
equilibrium @12–15# and dynamical properties@17# the ex-
cess free energy density functional of this model has b
successfully approximated by a puremean field@or random-
phase approximation~RPA!# form

DF@r#5
1

2E d3rE d3r 8f~ ur2r 8u!r~r !r~r 8!. ~10!
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Instead of solving the integro-differential Eq.~2! with this
model, we have obtained the steady state distribution by
time integration of Eq.~1! from a uniform density initial
state. The stationary structure around the colloidal part
are reached with short integration times, as presented in
1 for r0s351 ~which represents a fairly dense polymer s
lution! and c̄51s ~c! and c̄510s ~d!. At the low velocity
c̄s51 the influence of interactions between the polymers
very strong. The spherical layering structure created aro
the colloidal particle by the polymer-polymer repulsion
much stronger than the front-wake asymmetry induced
the dragged colloid; the extension of the wake behind
moving particle is strongly reduced by the much lower bu
osmotic compressibility of the interacting system, which
cilitates the filling of the axial hole by radial currents. At th
higher c̄s510 shifting rate in Fig. 1~d! the effects of the
interactions are much weaker. Although there is still a cl
shortening of the wake, explained by the lower osmotic co
pressibility, the main qualitative change with respect to
ideal solution result in Fig. 1~b! is that the layering created
by the packing effects produces a double cuplike structu
reaching further away from thez8-axis.

In Fig. 2 we present a quantitative view of our results; w
plot the polymer density as a function of the distanceR to the
z8 axis for fixed values ofz8/s561. The solution of the
DDF approach is compared to standard BDS@18#. Here, the
stochastic Langevin equations for the overdamped collo
motion of N particles with trajectoriesr i(t) ( i 51, . . . ,N)
read as

G0
21 dr i

dt
52“ r i(j Þ i

f~ ur i2r j u!1Fext~ t !1G0
21cẑ1Fi

(R)~ t !.

~11!

There are different forces acting onto the colloidal particl
first there is the force attributed to interparticle interactio
second there is the external fieldFext due to the colloidal

FIG. 2. Steady state density profiles of the polymers aroun
driven colloid atz8/s50 plotted as a function of the radial distanc
R/s from thez8 axis for fixedz8/s561. The shifting rates are~a!

s c̄51 and~b! s c̄510. Dashed lines are the results for ideal po
mers, while the curves for interacting polymers are plotted w
solid lines. The symbols~circles! are the simulation results.
7-3
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particle, G0
21c is the driving force, and finally the random

forcesFi
(R) describe the kicks of the solvent molecules act

onto thei th colloidal particle. These kicks are Gaussian ra
dom numbers with zero mean,Fi

(R)50, and variance

~Fi
(R)!a~ t !~Fj

(R)!b~ t8!52kBTG0dabd i j d~ t2t8!. ~12!

The subscriptsa andb stand for the three Cartesian comp
nents. The simulations were carried out withN51000 par-
ticles, periodic boundary conditions in all directions and b
sizesLx5Ly58s andLz516s. After an equilibration time
of 105 time steps, statistics were gathered over a period
23106 time steps. In both, simulation and numerical so
tion of the DDF, the density is averaged over rings atz8 and
radiusR with a cross sections2/4.

The good agreement between the BDS data and the D
results gives support to both the mean field approxima
~10! used to describe the effect of the interactions, and to
DDF borrowing of the equilibrium intermolecular forces,
functionals of the instantaneous density distribution@5,6#.
The comparisons between the ideal solution and the inter
ing system shows again that the polymer interactions af
much more the features of the density distribution for lowc̄

than for high c̄. For c̄s51 the polymer layer around th
colloidal shows only a slight asymmetry fors*z8*2s,
while the kinetic effects in ideal gas create a maximum at
front z8*s.

Qualitatively we may associate the behavior of the fro
structure to the direct kinetic effect of the advancing sph
cal repulsive potential created by the colloidal particle. Ac
grows the kinetic constrain on their Brownian trajector
becomes the dominant factor for the movement of the po
mers at the front. The polymer-polymer interaction pla
then a minor role, so that forc̄s@1 the main peak in the
front structure becomes similar for ideal and interact
polymers. The structure of the wake is determined by
diffusion from the bulk solution to fill the void left behind
the colloidal particle, the effect of the higher osmotic pre
sure accelerates that process and produces a weaker
than in the ideal solution limit. On the opposite extreme,
very low shifting rates of the colloidal particle, the effects
the polymer-polymer interactions are very important, both
the front and at the wake structures. At high polymer co
centrations the structure around the colloidal particle
dominated by the steric repulsions between polymers.
relatively rigid structure of molecular layers is shifted, wi
little deformations, by the moving colloidal particle.

IV. DISCUSSION

As the first point in our discussion, we consider the to
excess of polymersDN, produced byVext(r 8) over the uni-
form bulk density.This is a relevant data sincecDN is the
total polymer current, which requires a total forcecGoDN
provided by the colloid on the polymers. There is a gene
DDF relation
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DN[E d3r 8@r~r 8!2ro#52
b

c̄
E d3r 8r~r 8!

]Vext~r 8!

]z8

for the stationary density distributions, which allows to ca
culate the total excess from the density distribution in
neighborhood of the external potential. The results for
systems in Fig. 1 are:DNa53.05, DNb51.883, DNc
52.53, andDNd51.879. Again, the difference between th
interacting and the ideal cases is strongly reduced atc̄s

510, with respect toc̄s51. It is remarkable that the stati
equilibrium result forDN in the ideal gas case would b
negative@asr(r )5roexp„2bVext(r )…<ro], but the station-
ary excessDN is positive and grows asc decreases. This
may be understood from the analytical 1D result@8# for the
front r(z8)2ro;c exp(2c̄z8), which vanishes locally asc
→0, but it still gives a positive integral that overcompe
sates the depletion inside the potential barrier and produ
DN.0, consistently with the sign~and value! of the total
force. The difference between the equilibrium (c50) density
distribution and that of a stationary state at arbitrarily sm
but positive c̄ is remarkable. The apparent paradox com
from the concept of stationary state, which would app
after a short transient period whenc̄ is large, but it would
require diverging times asc̄→0. The very weak but ex-
tended structure of the exponential front inr(r 8) for c̄s
!1 would never be observed in practice, and the trans
statesr(r ,t) for any reasonablet would be very similar to
the equilibrium structure forc50. Nevertheless, the strongl
anisotropic density distributions, with nontrivial global e
fects even for very lowc̄, suggest important effects on th
interaction between two driven colloids in a bath of quie
cent Brownian particles@19#, qualitatively different from ef-
fective interactions in equilibrium@1,9,10#.

Finally we comment on the relevance of the bounda
conditions and the system dimension by comparing
present results with the 1D system explored in a previ
work @8#. Obviously, in the system explored here the effe
on the bulk polymer solution are limited to the neighborho
of the single colloidal particle. If we consider a finite co
centration of colloidal particles, all being drifted at the sam
ratec with respect to the stationary framework of the solve
there would be a finite induced polymer current per u
volume. The 3D structure, which offers easy paths for
polymers to escape from the colloidal particles, would pro
ably make unfeasible the approach to the full-drift regim
discussed for 1D systems, in which nearly all the partic
move along the shifting potential. Another possible proble
in 3D which may be of interest are currents through a str
tured barrier with holes or slits. However, we have to
aware of the intrinsic limitations of our DDF approach, pa
ticularly in the treatment of the solvent as an inert referen
framework for the Langevin dynamics of the polymer
which is not affected by the shifting external potential~or
colloidal particle!. Altogether, we may conclude that th
DDF offers a good theoretical tool to explore dynamic
problems in polymers solutions subject to time-depend
7-4
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external potentials which do not affect the solvent, and
formalism may also be used to predict, in good agreem
with BDS, the density structures created around colloi
particles or similar sized molecules moving slowly with r
spect to the solvent. However, the extension to problem
which the solvent plays a more direct role should be
garded with caution, as they may require a more symmetr
treatment of the solute and the solvent.
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